Discriminative Training of Subspace Gaussian Mixture Model for Pattern Classification

نویسندگان

  • Xiao-Hua Liu
  • Cheng-Lin Liu
چکیده

The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. For pattern classification, however, the GMM has to consider two issues: model structure in high-dimensional space and discriminative training for optimizing the decision boundary. In this paper, we propose a classification method using subspace GMM density model and discriminative training. During discriminative training under the minimum classification error (MCE) criterion, both the GMM parameters and the subspace parameters are optimized discriminatively. Our experimental results on the MNIST handwritten digit data and UCI datasets demonstrate the superior classification performance of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Effectiveness of dereverberation, feature transformation, discriminative training methods, and system combination approach for various reverberant environments

The recently released REverberant Voice Enhancement and Recognition Benchmark (REVERB) challenge includes a reverberant automatic speech recognition (ASR) task. This paper describes our proposed system based on multi-channel speech enhancement preprocessing and state-of-the-art ASR techniques. For preprocessing, we propose a single-channel dereverberation method with reverberation time estimati...

متن کامل

Spherical Discriminant Analysis in Semi-supervised Speaker Clustering

Semi-supervised speaker clustering refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. In the form of an independent training set, the prior knowledge helps us learn a speaker-discriminative feature transformation, a universal speaker prior model, and a discriminative speaker subspace, or equivalently a speaker-discriminative di...

متن کامل

Minimum Classification Error Training of Hidden Markov Models for Sequential Data in the Wavelet Domain

In the last years there has been increasing interest in developing discriminative training methods for hidden Markov models, with the aim to improve their performance in classification and pattern recognition tasks. Although several advances have been made in this area, they have been targeted almost exclusively to standard models whose conditional observations are given by a Gaussian mixture d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010